
PeerWare: Core Middleware Support
for Peer-to-Peer and Mobile Systems

Gianpaolo Cugola and Gian Pietro Picco
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza Leonardo da Vinci, 32

20133 Milano, Italy

{cugola, picco}@elet.polimi.it

ABSTRACT
The pervasiveness of computer networks, together with the
availability of wireless links, are steering distributed systems
towards scenarios where computing is increasingly decentral-
ized, decoupled, and dynamically reconfigurable. The pop-
ularity of and demand for applications that exploit mobile
and peer-to-peer interactions is a symptom of such change.
Nevertheless, by and large these applications are being built
in an ad hoc manner, and often with architectures that,
by sticking to the traditional client-server paradigm, do not
fully capture and support the peculiar requirements of the
new scenario.

In this paper, we present a new middleware, called Peer-
Ware, whose design is geared towards peer-to-peer and mo-
bile systems. The paper is a presentation of the model
underlying PeerWare, followed by a discussion of its ar-
chitectural implication, and by a description of the current
implementation efforts.

1. INTRODUCTION
The last few years have witnessed a growing interest in

paradigms of computing that are increasingly decentralized
and exhibit high demands for flexibility and reconfigura-
bility. This has brought to the frontline of research sev-
eral problems that intrinsically involve a large number of
components that are physically distributed and operate au-
tonomously. The growing interest for coordination languages,
multiagents architectures, and middleware is a result of this
situation.

More recently, the problem of supporting large-scale and
highly decentralized distributed computing has been further
complicated by the evolution of communication technology.
Wireless communication allows for new modes of exploit-
ing the network. Users are able to connect to a fixed net-
work (e.g., the enterprise-wide intranet, or even the Inter-
net) without the need of being physically connected through

Submitted to ESEC/FSE 2001.

cables, and they can remain connected even while in move-
ment. In addition to this scenario, usually referred to as
base station mobility, in more radical mobility settings users
can completely bypass the fixed network and exploit oppor-
tunistically formed network structures, typically called ad
hoc networks [16], where communication is enabled at all
levels uniquely by the mobile hosts.

In both domains, that is, large-scale, highly decentralized
computing and mobile computing, it is becoming evident
how the traditional client-server paradigm is no longer suf-
ficient. By imposing a tight coupling between clients and
servers, and by relying on the permanent availability of the
latter, this paradigm does not accommodate well the re-
quirements of scalability and flexibility posed by the new
distributed scenarios, and may be impractical in a mobile
scenario where the physical and logical structure of the net-
work is made extremely fluid by connectivity changes [20].

In this context, the peer-to-peer paradigm has been lately
revamped by a flurry of research and commercial systems.
Napster [1], Gnutella [2], and Freenet [3] are examples of ap-
plications that, by enabling distributed applications where
each user shares transparently with all the connected peers
information residing on the local host, have spurred a new
round of hype about “the next Internet”.

Beyond the hype, however, there are reasons that moti-
vate a shift from client-server to peer-to-peer. In a peer-
to-peer environment, users directly host the resources they
want to share globally, without any need for publishing them
on some server. Information and services are no longer gath-
ered in a single point of accumulation on the network; in-
stead, each peer is responsible for a subset of the global
services. At the same time, the aforementioned applications
are symptomatic and supportive of modes of exploiting the
network that, rather than forcing the user to find the server
to be contacted, allow her to query the global space of in-
formation at once. This is indeed a key feature in a heavily
decentralized architecture, and happens to satisfy the re-
quirement for a pattern of interaction Internet users experi-
ence on a daily basis, any time they use a search engines to
find a specific Web server.

These motivations for peer-to-peer become even stronger
when mobility, and especially ad hoc networking, is part of
the picture. In such scenario, peer-to-peer interactions are
simply the way of life, since they constitute the fundamental
mode of communication forced by the network environment.
Similarly, the ability to query the global space of informa-



tion at once assumes an even greater role, since the set of
connected peers changes dynamically, and any kind of ref-
erence to another peer may quickly become obsolete and
non-available.

It is interesting to note that, thus far, development of
these applications is largely ad hoc, to the point that some
of the aforementioned applications, that indeed provide the
user with a peer-to-peer view, are actually implemented by
exploiting the centralized client-server approach behind the
scenes. No concept of middleware, i.e., of an application pro-
gramming interface supporting abstractions that simplify
the chore of developing applications in a specific domain,
as yet appeared for peer-to-peer systems.

Similar considerations hold for the mobile computing do-
main, where the available middleware is either application-
specific (e.g., Coda [14], or Bayou [21]), or geared towards
the networking layers (e.g, Limbo [9] or Mobiware [8]).

Hence, the problem we address in this paper is: Can we
simplify the development of peer-to-peer and mobile appli-
cations with middleware support? And, if yes, what are the
fundamental abstractions this middleware should provide?

This paper is a reflection over these issues, concretized in
the presentation of the first version of the model of a new
middleware, called PeerWare, which directly supports the
adoption of a peer-to-peer architecture for distributed appli-
cations. The first and most important application domain
in which PeerWare is expected to be used is that of dis-
tributed applications involving mobile hosts, but we also
consider more traditional scenarios, like the Internet, which
introduce and stress different requirements, like scalability.

PeerWare is evidently influenced by our previous ex-
perience with the Jedi [10] and Lime middleware [15, 18].
Both these experiences were focused on supporting mobil-
ity, albeit under different forms. In the case of Jedi, a pub-
lish/subscribe middleware, the components were allowed to
disconnect from the Jedi event dispatcher and to reconnect
from a different location. Instead, Lime was especially con-
ceived to support both the logical mobility of agents and the
physical mobility of hosts in an ad hoc network, supporting
coordination through a dynamically reconfigured Linda-like
tuple space. PeerWare aims at taking the best from these
two approaches and at integrating them, together with new
ideas, under a unifying framework, with the overall goal of
seeking simplicity and minimality of the resulting applica-
tion interface.

The paper is structured as follows. Section 2 presents
the requirements for PeerWare, the intended scenario of
application, and the design goals we established for it. Sec-
tion 3 provides the reader with some background by illus-
trating some approaches from which PeerWare borrows
ideas. Section 4 discusses the strengths and weaknesses of
these approaches, and sets the scenes for the presentation of
the PeerWare model in Section 5, together with its archi-
tectural implications and a description of the current proto-
type. Section 6 summarizes the main contributions of this
work, also by comparing it with similar research efforts. Fi-
nally, Section 7 hints at future work on PeerWare, together
with some concluding remarks.

2. APPLICATION DOMAINS AND GOALS
PeerWare is currently being developed by targeting the

needs of two projects we are involved in, which will give us
the opportunity to verify the soundness of our middleware

primitives against the requirements of real-world applica-
tions. Together, the requirements of these application cover
most of the requirements for peer-to-peer and mobile com-
puting. For this reason, this section illustrates in some detail
the characteristics of these applications.

The first testbed application for PeerWare is a platform
supporting distributed and mobile teamwork, currently be-
ing developed within the project MOTION1, funded by the
European Community. The goal of the project is to build
a framework of teamwork services that can be tailored to
the specific needs of companies to build an enterprise-wide
infrastructure for cooperation. The target distributed team-
work applications must support potentially large groups of
people, typically distributed over the enterprise network or
even the Internet, which cooperate towards some goal possi-
bly according to some business process. The platform must
support searches for documents and people belonging to the
organization, as well as the ability to subscribe to changes
occurring in such information. Mobility is part of the re-
quirements for this project, to enable users to take advan-
tage of mobile hosts and wireless links for connecting to a
fixed network and get involved in the cooperation process.

Hence, base station mobility is predominant in this sce-
nario, and disconnections can be assumed to happen in a
controlled way. Moreover, a peer-to-peer perspective natu-
rally supports such an environment where the space of infor-
mation of relevance for the application is actually built out
of the resources individually made available by each user.

The other testbed application is instead concerned with
the problem of providing support for operations in a dis-
aster recovery scenario, within a research project currently
under evaluation by the Italian Research Council. Disaster
recovery is a typical example of an application demanding
extreme forms of mobility like ad hoc networking. People
operating on a disaster scene (e.g., an earthquake or a flood-
ing) typically cannot rely on any form of fixed network, that
is often destroyed. They must communicate by taking ad-
vantage only of their own devices, and typically cooperate
by exchanging information about the field of operation, and
by sending and receiving notifications about relevant events.

In this context, the middleware must take into account
mobility in its fullest implications: the base station scenario
is no longer applicable, and disconnections are frequent due
to the fact that users actually move while communicating
on the field of operation.

As mentioned in the previous section, the requirements of
flexibility, scalability, and support for a dynamically chang-
ing environment in which new nodes connect and discon-
nect at run-time we identified here, intuitively clash with
the notion of centralized and globally known servers that
characterize the traditional client-server architectures. Con-
versely, they naturally lead to a peer-to-peer architecture in
which the different pieces composing the application act as
autonomous components that communicate and coordinate
through the services provided by the middleware which, in
turn, must be able to operate even in absence of any cen-
tralized and fixed support.

Hence, our main goal for PeerWare was to design a peer-
to-peer middleware that provides abstractions that appro-
priately encompass the kind of reconfigurability required by
the aforementioned application domains.

1IST-1999-11400, www.motion.softeco.it.



In doing this, we were driven by two objectives. The
first was performance. We aimed at this goal by privileging
choices in the definition of the PeerWare model that would
reasonably lead to an efficient implementation of the mid-
dleware. The second objective was minimality. We aimed at
this goal by trying to identify a minimal set of concepts and
abstractions that other could exploit to build middleware
providing higher-level abstractions.

3. THE ROOTS OF PeerWare
The conception and development of PeerWare has been

influenced by several state-of-the-art approaches, concepts,
and ideas concerned with the development of distributed
middleware. While the footprints of these approaches can
be clearly identified in PeerWare, the latter is not merely
an assembly of previously developed ideas. Instead, our goal
is to integrate the best of the different perspectives and cover
the widest range of concerns under a single, unifying model.

In this section, we discuss these approaches in some detail,
to provide the reader with the necessary background. The
next section will provide a critique of these approaches, and
set the scenes for the presentation of PeerWare.

3.1 Publish/Subscribe Systems
In publish/subscribe systems, also known as event-based

systems, autonomous components interact through event
notifications, often simply called events. Each component
may notify a change in its state, or in the state of the envi-
ronment it interacts with, by publishing an event E. Com-
ponents may subscribe to one or more classes of events, thus
expressing their interest in receiving them. All the compo-
nents that subscribed to a class of events that includes E
receive a copy of such event. At the architectural level, pub-
lish/subscribe systems usually include an event dispatcher
a special component in charge of managing event distribu-
tion by collecting event subscriptions and distributing events
to all the subscribers. Examples of systems exploiting the
publish/subscribe paradigm are graphical user interfaces,
embedded applications whose control flow is regulated by
interrupt requests, component-based frameworks like Sun’s
JavaBeans [4], and several classes of distributed applica-
tions. Usually, a distributed, publish/subscribe application
is built around a publish/subscribe middleware. It provides
an implementation (some times distributed) for the event
dispatcher, an event model, and a language to express event
subscriptions2.

Thus, publish/subscribe middleware embodies a commu-
nication and coordination model that is inherently asyn-
chronous; multicast, because event notifications are sent to
all the interested components; anonymous, because the iden-
tity of the sender is hidden to the receiver; implicit, because
the set of recipients of each event notification is chosen im-
plicitly, based on subscriptions, and cannot be changed by
the sender; and stateless, because event notifications are not
persistently stored by the system, rather they are sent only
to components that subscribe before the event is sent.

3.2 Linda
Linda [13] can be regarded as a coordination model and

an architectural style for building both centralized and dis-

2For a comparison of several publish/subscribe middleware
see [11].

tributed applications. In an application based on the Linda
model the various components interact by writing and read-
ing elementary data items, ordered sequences of typed fields
called tuples, to and from a persistent, globally shared data
space, the tuple space. Each component can drop, withdraw,
or read a tuple in the tuple space by invoking, respectively,
the out, in, or read primitive. The in and read primitives
accept a pattern as a parameter and return a matching tuple,
chosen non-deterministically among all the matching tuples
present in the tuple space. Matching is based on the arity
of the tuples and on the type of their fields. Furthermore,
if no matching tuple is currently available during a in or
read call, the caller is suspended until a matching tuple is
inserted, thus allowing synchronization among components.
In some variants of the model, non-blocking versions of the
access primitives, called probes, are also provided.

Linda implementations have been traditionally used in
the context of parallel computation. Recently, a number
of Linda-based middleware (e.g., [5, 6]) have been conceived
for distributed computing. Nevertheless, such middleware
is typically just a client-server implementation enabling re-
mote access to a centralized tuple space.

Communication in Linda can be both unicast and multi-
cast, depending on the use of in and read; it allows syn-
chronization among components, as well as asynchronous
communication among them; anonymous; implicit, because
writers cannot choose the readers of the tuple they write;
and state-based, because tuples added to the tuple space
remain there until some other component removes them.

3.3 Mobile Code
Code mobility3, that is, the ability to relocate at run-

time the software components of a distributed application,
has become popular in recent years. While the idea has been
typically associated to the Java language and its provision
of mechanisms to program the dynamic loading of classes,
the very concept of code mobility is rooted at the architec-
tural level rather than at the technological one. When code
mobility is employed, location becomes a first class concept,
and designers may play with components location, by choos-
ing how code and computation must move at run-time. The
benefits expected from this expressive power are twofold:

• Designers are allowed to move the application knowl-
edge close to resources, thus reducing bandwith re-
quirements of distributed applications. On the other
hand, it has been argued [12] that the effective benefits
of this strategy strongly depend on the characteristics
of the application and of the environment where the
application runs.

• Designers are granted an unprecedented degree of flexi-
bility in customizing applications. Code may be shipped
or fetched at run-time to customize applications as re-
quired. In this case, the benefits are obvious and less
arguable.

As we will explain better in Section 5, in PeerWare we
used mobile code as a tool to obtain both benefits, but we
focused on the second one. By taking advantage of mobile

3The reader interested in learning more about technologies,
architectures, and applications of code mobility, is redirected
to [12].



code we have been able to provide a very small set of primi-
tives that can be customized by the programmers to provide
the required coordination semantics.

3.4 Global Virtual Data Structures
The concept of global virtual data structure (gvds) [17] is

a generalization of the Lime [15, 18] coordination model.
In Lime, each component holds a local tuple space, which

is transiently shared with the tuple spaces of the connected
components. By accessing its own local tuple space, each
components has effectively access to the global tuple space
whose content is defined by the union of the tuple spaces
belonging to the connected components. In other words,
actions that are perceived as local actually have a global
effect.

With the term gvds we refer to a meta-model of com-
munication for mobile environments, centered around the
idea of supporting coordination among a set of mobile hosts
through a data space that is transiently shared and dynam-
ically built out of the data spaces provided by each compo-
nent in range. This data space is global because it includes
all the data contained in all the local data spaces of the con-
nected components, and it is virtual since it does not exist
physically as a single entity, like the local ones. Instead,
it is an “illusion” dynamically generated by the underlying
middleware upon invocation of the local access primitives,
and according to changes in connectivity. Hence, the gvds
paradigm naturally enables a context-aware style of coordi-
nation where, in every moment, the context is described by
the content of the gvds, which reflects the state of accessible
components.

Observe that the gvds paradigm is a meta-model of com-
munication and coordination since it does not specify how
the gvds is structured (e.g., it could be a data matrix orga-
nized in such a way that each host holds part of the matrix,
or a tree with each sub-tree held by a different component,
and so on) and which primitives are provided to effectively
access the gvds. In particular, the set of primitives to access
the gvds may be chosen to hide the portion of the context
containing information about the system configuration (e.g.,
the location of a given piece of data), or to reveal it. More-
over, primitives can then be tailored to the scenario of mobil-
ity taken into consideration for the specific incarnation of the
meta-model, thus allowing developers to choose the desired
compromise between expressiveness, context-awareness, and
efficiency of the resulting middleware.

4. TOWARDS A NEW MIDDLEWARE
Each of the aforementioned approaches essentially covers

a facet of the solution towards the problem of supporting
peer-to-peer and mobile applications and, at the same time,
exhibits some drawbacks.

The publish/subscribe paradigm is well suited for dis-
tributed and mobile applications that need purely message-
based communication and that are largely leveraging the
ability to react to changes in the state of the other compo-
nents. Given the high degree of reconfiguration undergoing
in the scenarios we target, this feature is surely a desirable
one. Moreover, the different publish/subscribe middleware
available today show that this paradigm is amenable to be
implemented in a very efficient and scalable way by dis-
tributing the event dispatcher. On the other hand, by adopt-
ing purely asynchronous, stateless communication primitives

only, publish/subscribe middleware offers a rather limited
support to coordination and synchronization.

Conversely, the Linda paradigm, centered around a per-
sistent and globally accessible, shared data space, very eas-
ily supports state-based coordination and synchronization
among components but, on the other hand, it offers only
limited support to a reactive model of execution.

In PeerWare, we essentially rejoin the two perspectives
under a single coordination model that ties together event
notification and the notion of a shared data space holding
the global context for the computation. Event definition,
rather than being completely arbitrary, is always tied to
portion of the state contained in the data space. Further-
more, applications are able both to query the global data
space and to subscribe to events occurring in it.

In this perspective, the notion of gvds provides the con-
ceptual framework that allows to cope with the reconfigura-
tion needs of physical mobility and peer-to-peer systems by
defining a global data space that can be transparently and
dynamically broken apart and reconstructed.

Together with this form of support for reconfiguration at a
physical level, mobile code adds the capability for dynamic
reconfiguration at the logical level. By enabling dynamic
relocation of code, PeerWare allows programmers to rede-
fine at run-time the coordination primitives used to interact
with the shared data space, and thus provide another level
of flexibility.

To our knowledge, such a synergic combination of the
aforementioned approaches is novel, and it has the potential
to open up opportunities for the development of a new breed
of middleware technology.

5. PeerWare
In this section we first describe the communication and co-

ordination model adopted by PeerWare, which is strongly
rooted on the idea of gvds. Then we provide some archi-
tectural considerations that may guide the implementation
of a middleware that implements this model. Finally, we
describe our first prototype for such a middleware.

5.1 The Model
PeerWare is centered around the notion of a global vir-

tual data structure built out of the local data structures
contributed by each user. From the point of view of the
user accessing this gvds, the content of the data struc-
ture is automatically and dynamically reconfigured accord-
ing to changes occurring in the system, typically induced
by changes in connectivity among components. This ap-
proach is very similar to the one exploited in Lime [15, 18],
PeerWare exploits a richer data structure that, together
with the choices made about the operations allowed on it,
is intended to give more expressive power to the application
programmer and to open up opportunities for optimizations
at the run-time layer.

5.1.1 Data as Forests of Trees
The data structure managed by PeerWare is organized

as a graph composed of nodes and documents, collectively
referred to as items. More formally, a data structure is a
tuple:

DS = 〈N, D, Γ, L, Λ〉
where:



• N is a set of nodes;

• D is a set of documents;

• Γ ⊆ N ×N ∪N ×D is the containment relation, such
that nΓi iff node n contains item i;

• L is a set of labels;

• Λ : N → L is a labelling function, which associates
each node with a (non necessarily distinct) label. It is
a total function.

Nodes are essentially containers of items, and are meant
to be used to structure and classify the documents managed
through the middleware. To enforce this meaning, Γ must
satisfy the following properties:

∀n1, n2 ∈ N (n1Γ
∗n2 ⇒ ¬(n2Γ

∗n1))

∀n1, n2, n3 ∈ N (n1Γn3 ∧ n2Γn3 ⇒ n1 = n2)

∀d ∈ D ∃n ∈ N (nΓd)

where Γ∗ is the transitive closure of Γ, defined as

∀n1, n2 ∈ N (n1Γ
∗n2 ⇔ n1Γn2 ∨ ∃n ∈ N (n1Γ

∗n ∧ nΓn2))

This basically means that nodes are structured in a for-
est of trees, with distinct root, which most likely represent
different perspectives on the documents contained into the
data structure. For instance, one could have an “Adminis-
tration” tree, a “Current Projects” tree, and so on. Within
this graph, each node is linked to at most one parent node
and may contain different children nodes. Conversely, stand-
alone documents are forbidden; documents are linked to at
least one parent node and do not have children. Hence, a
document may be contained in multiple nodes.

As for labels, two nodes may have the same label, as long
as they are not both roots and are not directly contained into
the same node. Formally this means that Λ must comply to
the following rules:

∀n1, n2 ∈ R (n1 6= n2 ⇒ Λ(n1) 6= Λ(n2))

∀n, n1, n2 ∈ N (nΓn1 ∧ nΓn2 ∧ n1 6= n2 ⇒ Λ(n1) 6= Λ(n2))

where R ⊆ N is the set of roots in N :

R = {n ∈ N | @n′ ∈ N(n′Γn)}
This organization of nodes is very useful to express com-

plex data classification schemes. For instance, the document

N1

N6

N5

N3N2

N4

N7

N8 N10N9

D6

D7
D8

D

N Node

Document

D1

D4

D5

D3D2

Figure 1: An example of the global virtual data
structure managed by PeerWare.

N1

N3N2

N7

N8 N10N9

D6

D7
D8

D1

D3

Peer A

N1

N6

N5

N3N2

N4

D8

D4

D5

D2

Peer B

N1

N6

N5

N3N2

N4

N7

N8 N10N9

D6

D7
D8

D1

D4

D5

D3D2

GVDS
D8

Figure 2: An example of the global data structure
that results when two users are connected.

you are reading could be found under the “Software En-
gineering” node but also under the “Distributed Systems”
node, both part of the tree rooted at the “Information Tech-
nology” node. The resulting structure, depicted4 in Figure 1
is similar to a standard file system with multiple roots where
directories play the role of nodes, files are the documents,
and Unix-like hard links are allowed only on documents.

5.1.2 Sharing the Data under agvds
Each component, which we will call from now on simply

peer, using PeerWare is associated with a local data struc-
ture DS , whose content is assumed to be stored locally to the
peer. As a special case, this data structure may be empty
(e.g., in case of lightweight peers running on a PDA).

At any time, the local data structures held by the peers
connected to PeerWare are made available to the other
peers as part of the global virtual data structure managed by
PeerWare. This gvds has the same structure of the local
data structure (i.e., it complies with the above definition
of DS) and its content is obtained by “superimposing” all
the local data structures belonging to the peers currently
connected, as shown in Figure 2.

More formally, let DS1 . . .DSk be the local data struc-
tures held by the set of k peers that are connected through
PeerWare at a given instant in time:

DS i = 〈Ni, Di, Γi, Li, Λi〉 i = 1 . . . k

and let GVDS be the gvds managed by PeerWare:

GVDS = 〈N, D, Γ, L, Λ〉

Beside the properties defined above for generic data struc-

4Observe that, to keep the example simpler, we used dif-
ferent labels for each node, but this is not a requirement.
Notice also that to distinguish documents we labelled them
with a name, which is not part of the model.



tures DS , the following must be satisfied by GVDS :

D =
⋃

i=1...k

Di

L =
⋃

i=1...k

Li

and N , Γ, and Λ have to be defined in such a way that it
must be possible to define a projection function Π:

Π :
⋃

i=1...k

Ni → N

which must be total, surjective, and must satisfy the follow-
ing properties:

∀i ∈ [1, k] ∀ni ∈ Ni (Λ(Π(ni)) = Λi(ni))

∀i ∈ [1, k] ∀ni ∈ Ni (ni ∈ Ri ⇔ Π(ni) ∈ R)

∀i ∈ [1, k] ∀ni, n
′
i ∈ Ni (n′iΓini ⇔ Π(n′i)ΓΠ(ni))

∀i ∈ [1, k] ∀ni ∈ Ni ∀d ∈ Di (n′iΓid ⇔ Π(ni)Γd)

where Ri ⊆ Ni is the set of roots of DSi , and R ⊆ N is the
set of roots of GVDS .

In practice this means that N , Γ, and Λ must be chosen in
such a way that not only they must satisfy the constraint of
a generic data structure DS , but it must also be possible to
define a function Π that projects the content of homologous
nodes into a single node of the gvds which holds the same
position of the projected nodes and has the same name. Ho-
mologous nodes are nodes with the same name and holding
the same position in trees belonging to different peers. For
instance, in Figure 2 the node N2 on peer A contains a single
document D3, while the homologous node on peer B con-
tains a single document D2. However, the content of N2

made available through the gvds includes both D2 and D3.
Changes in connectivity among peers determine changes

in the content of the global data structure constituting the
gvds, as new local data structures may become available
or disappear. Nevertheless, the reconfiguration taking place
behind the scenes is completely hidden to the peers accessing
the gvds, which need only to be aware of the fact that
its content and structure is allowed to change over time.
Moreover, it will also become clear in the remainder of the
section how such conceptual reconfiguration can actually be
implemented with only a minimal degree of reconfiguration
taking place at the run-time layer.

5.1.3 Operating on thegvds
Now that the data structure for the gvds has been de-

fined, the next question on the table is the definition of the
operations that are allowed on such data structure.

It is important to note at this point how PeerWare draws
a sharp line between the operations that can be performed
globally, i.e., on the whole gvds, and those that instead can
be performed only on the local data structure. This choice
is different from the one taken by Lime, where the program-
mer always accesses a single data structure representing the
gvds, and is given syntactic means to restrict the scope of
operations to localize their effects. Our claim is that a sep-
aration between local and global scope made at the model
level is more natural, in that it mirrors the fact that only
the local data structure is a concrete data structure, while
the gvds is a virtual data structure. While hiding this dif-
ference provides an elegant uniformity to the model, it may

also hide the fundamental difference between local and re-
mote effects of the operations. This, as pointed out in [22],
may induce the programmer to use the operations in rather
ineffective ways, and may heavily complicate the incarnation
of the model into a middleware. We will elaborate further
on these considerations in the next section.

The operations defined only on the local data structure
are:

• createNode(n,nf ) and removeNode(n). Allow manip-
ulation of the schema of the local data structure, by
creating the new node n into an existing node nf or
by removing the node n.

• placeIn(d,n) and removeFrom(d,n). Allow manipula-
tion of the content of the local data structure, by in-
serting (removing) a given document d into (from) a
given node n.

• publish(e,i). Generates a notification that a given event
e has occurred on a given item i.

Instead, the following are the operations available on both
the local and the global data structures:

• I = execute(FN ,FD, a). Executes an arbitrary action
a on the projection of the data structure identified by
FN and FD, by performing the following steps:

1. The node filter function FN is applied to the
nodes of the data structure to return the set Mn

of matching nodes.

2. The document filter function FD is then applied
to all the documents included in the nodes in Mn,
to return the set Mi of matching items.

3. Mi is then handed to the action a, a code frag-
ment that, starting with these items and, possibly
by operating again on the data structure, yields
a set I of items.

4. I is then returned to the caller.

• subscribe(FN ,FD,FE , c). Allows a peer to subscribe
to the occurrence of an event matching the event filter
function FE and being published within the projection
of the data structure identified by the filter functions
FN and FD. When the event occurs the code fragment
c is executed locally to the caller.

• I = executeAndSubscribe(FN ,FD,FE , a, c). Executes
an arbitrary action a on the projection of the data
structure identified by FN and FD, similarly to exe-
cute. Also, in the same atomic step, it subscribes for
events that match FE , and occur within the same pro-
jection, by specifying the code fragment c that must be
executed locally to the caller, when one of such events
occurs.

Despite the fact that the signature of these operations
is identical for both local and global data structures, their
effect is limited in scope by the nature of the data struc-
ture they are applied to. Moreover, also the semantics of
the operations is affected by this choice. In particular, the
semantics of a global operation can be regarded as being
equivalent to a distributed execution of the corresponding



operation on the local data structures of the peers currently
connected.

This latter remark, however, raises another issue. The
definition of the operations, and especially of those acting
on the gvds, must take into account the tradeoffs between
expressive power, efficiency, and implementability. In par-
ticular, since the intended domain of application of Peer-
Ware is the distributed and mobile setting, special atten-
tion must be paid to the issue of atomicity. Thus far, we
said nothing about the atomicity of the operations, implic-
itly assuming it is somehow guaranteed. While this is a
reasonable assumption for the operations defined on the
local data structure, this may become an impractical as-
sumption in a distributed setting. For this reason, we define
variants of the global operations, namely execute, subscribe,
and executeAndSubscribe, that do not provide any guaran-
tee about global atomicity, and guarantee only that the ex-
ecution of the corresponding operations on each local data
structure, that we said to be an integral part of the global
execution, is correctly serialized (i.e., it is executed atomi-
cally on each local data structure).

It is interesting to note how the number of operations
introduced by PeerWare is rather small. This is the con-
sequence of a precise design choice, in that PeerWare is
designed to provide a minimal core of primitives and run-
time infrastructure that, although useful when employed di-
rectly, is conceived to be the base for middleware providing
higher-level abstractions.

This design criteria explains also the role of the execute
primitive, which is essentially a sort of meta-operation de-
manding to the action, provided by the caller, the actual
semantics for accessing the data structure. We envision a
scenario where a set of predefined actions are available as
a library, e.g., operations to read one or more documents
from the local data structure, operations to add metadata
associated to documents, or to filter documents in ways that
are application dependent. These operations may vary from
implementation to implementation, and even from applica-
tion to application. Actions are then a way to implement
these operations, and ensure their execution in the context
of a single atomic access to each local data structure. The
execute operation essentially provides a basic mechanism to
enable a global execution of such actions over the gvds. For
the same reason, it must be underlined that actions are not
necessarily drawn from a predefined pool associated with the
target local data structures. Instead, they can be defined by
the caller, that is effectively allowed to change dynamically
the high level coordination primitives by which it accesses
the gvds. This latter remark opens up architectural so-
lutions that heavily exploit the notion of mobile code, on
which we elaborate in the next section.

Clearly, the aforementioned notion of action provides the
programmer with tremendous flexibility—and danger—in
the way the local and global data structures can be accessed.
For instance, in principle actions may have side effects that
are outside the scope of the local data structure (e.g., send
an e-mail, or invoke a method on a co-located object). Still,
execute provides a level of flexibility that is appropriate for
the designer of higher-level middleware or application tiers.

Similar considerations hold for the executeAndSubscribe
primitive, that nevertheless extends execute with the ability
to “hook” on some information, by allowing the realization
of schemes providing strong consistency on such information

by retrieving some data and monitoring events occurring on
them. For instance, a programmer might want to retrieve
the content of a node and be notified if any new document
appears in that node, e.g., to build a graphical browser of
the global data structure.

Observe that the same behavior cannot be obtained by
simply invoking execute followed by subscribe. In fact, given
the inherently distributed and asynchronous nature of the
system, a peer could publish a relevant event right in be-
tween the execute and the subscribe. Such event would not
be captured by the subscription, and the notification would
never show up, thus leading to an inconsistent state.

5.2 Towards a Middleware:
Architectural Considerations

Given our ultimate goal of delivering a new middleware,
the model we presented thus far is meaningful only if an
implementation providing reasonable efficiency can be con-
ceived and realized in practice. In this section, we discuss
what are the implications of our model in terms of deriv-
ing a distributed architecture and, ultimately, a middleware
implementation supporting it. The next section will elabo-
rate further on this latter aspect, illustrating our on-going
prototyping activities.

The PeerWare model naturally suggests a middleware
implementation that is intrinsically peer-to-peer, where each
peer hosts a repository that contains its local data structure.
An operation on the gvds, e.g., a global execute, is then per-
formed by disseminating on the connected peers the request
for a local invocation of the corresponding primitive, and
sending the results back to the caller. Hence, each peer
needs to host a run-time support to manage the routing of
system messages, like event notifications and requests for
execute operations.

Nevertheless, the model does not prescribe anything about
how such routing must be performed, e.g., what is the topol-
ogy of the network interconnecting the peers, and what algo-
rithms are used to perform routing on top of it. As such, the
model leaves us free to experiment with several architectural
alternatives, essentially driven by the network environment
the middleware will operate in, and by non functional re-
quirements like performance, scalability, and flexibility in
supporting mobile hosts.

Thus, for instance, we are currently investigating two dif-
ferent implementations of PeerWare, one aimed at a fixed
network environment, where connectivity among peers is
determined by the explicit action of logging in and out of
the system, and one aimed at an ad hoc network environ-
ment, where instead logical connectivity among peers is de-
termined by the physical connectivity among their hosts.
Clearly, the two implementations are likely to differ widely
in the routing algorithms employed, due to the very different
assumptions that can be made about the environment. For
instance, to arrange the peers in a logical network that is
hierarchical, and to route messages following this hierarchy
may be a simple and efficient strategy for the fixed network
case. On the other hand, this solution might be impracti-
cal in an ad hoc network, where the ever-changing topology
would force a continuous reconfiguration of the hierarchy.
A graph-like logical network would probably be more ap-
propriate in this case, as it provides improved reliability by
allowing multiple linkgs among peers. Nevertheless, it is our
contention that application programmers will be shielded by



these differences and will be able to use a single, unifying
programming model in both scenarios.

On the other hand, the PeerWare model includes several
choices that have been made on purpose to open up oppor-
tunities to improve efficiency and scalability of any Peer-
Ware implementation, independently from the underlying
architecture. This is already evident in the choice of the
gvds, whose hierarchical nature happens to provide a natu-
ral way to restrict the scope of the operations performed over
the gvds, and thus to allow optimizations of the processing
involved. For instance, the distribution of requests for an
execute could be somehow “steered” only towards the peers
that actually contain the nodes that are targeted by this op-
eration. Analogously, the containment relation among nodes
may enable implementations where subscriptions to events
occurring in a node n are not propagated in the system if
there is already an outstanding subscription for the parent
node p. Similarly, this relation would enable a sort of event
multiplexing for the case where a peer has two outstand-
ing subscriptions, one for events occurring on n and one for
events occurring on p. If an event that matches both sub-
scriptions occurs on n, rather than sending it twice along the
path from the event source to the destination, a single event
could be transferred to destination and then demultiplexed
at the target peer, thus potentially saving bandwidth in an
application where this pattern occurs frequently.

This last consideration is related with another relevant
issue that needs to be resolved before implementing an ac-
tual middleware, namely, the expressiveness of the languages
used to specify the filters FN , FD, and FE . Here, the trade-
offs are between the expressive power placed in the hands
of the programmer and the burden of added complexity and
overhead placed on the middleware run-time support.

Since each node n is uniquely characterized by the se-
quence of labels of the nodes in the path from the root of
the tree holding n to n itself, a minimalist choice for the node
filter FN would be to allow the programmer to specify only
one such sequences of labels, thus identifying a single node.
Nevertheless, this would prevent some of the aforementioned
optimizations and, for many applications, complicate exces-
sively the life to the programmer. At the other extreme,
one could choose to exploit an extremely powerful language
based on regular expressions, to allow programmers to fil-
ter out different nodes in a single step (e.g., filtering all the
subnodes of a given node).

Things become even more complex in the case of event
filters and data filters, since their characteristics largely de-
pend on the nature of events and documents, which are
rightfully left unspecified by the model definition. As an ex-
ample, if events were uniquely characterized by a name the
event filter could be specified as a regular expression. Con-
versely, in the case of complex events characterized by sev-
eral typed fields, one could imagine to exploit an extremely
powerful filtering language. This approach is similar to the
one taken by JMS [7], which prescribes the use of a subset
of SQL-92. Similarly, if documents were as simple as tuples,
the data filter could specify a Linda-like pattern matching
on tuple fields. On the other hand, if documents were as
complex as XML documents, then filters could be as com-
plicated as an XML query.

Observe that, in the case of data filters, the capability
to specify arbitrary actions in the operations on the gvds
introduces an additional degree of freedom, by allowing the

middleware designers to keep a very simple language for data
filters, thus streamlining the distributed processing, and ex-
ploit actions to perform finer-grained filtering taking place
while co-located with the actual data.

This last consideration highlights a peculiar characteris-
tic of the PeerWare model. The mechanism of actions
not only allows programmers to define dynamically the ex-
act behavior of the primitives through which they access
the gvds, but also allows computation to be moved close to
resources, thus opening up interesting opportunities to effi-
ciently implement complex operations over documents. As
mentioned in the previous section, at the architectural level
this involves the use of mobile code technology to implement
the shipping and fetching of the code of actions.

Another peculiarity of the PeerWare model is the strong
separation between local and global primitives. This allows
programmers to easily adopt a location-aware model of co-
ordination that could be pushed to its extreme if they were
provided with a mechanism to access the local data struc-
tures of remote hosts. This mechanism has been rightfully
left out of the PeerWare model, since it is focused on ef-
ficiently managing the gvds as a whole. Consequently, an
important architectural issue becomes if and how the local
primitives have to be made visible to remote peers. Several
strategies are possible. On one extreme, one could imagine a
pure gvds-based implementation of the PeerWare model
that does not offer any mechanism to access the local data
structures of remote peers. Even in this case, the Peer-
Ware model would enable a certain form of location-aware
programming through the use of actions, which are executed
on remote peers where data is found and are able to access
the local data structure of that peers. On the other extreme,
a middleware adopting the PeerWare model could provide
full access to the local data structure of remote peers.

5.3 Implementation Strategy
Our strategy towards implementing PeerWare follows

an incremental approach, starting with a rather constrained
application environment where the concepts and mechanisms
of PeerWare are being checked for soundness and com-
pleteness against the experience of developing toy examples,
demos, and real-world applications, and then evolving to-
wards more challenging scenarios.

The first stage of this strategy involves building an im-
plementation of PeerWare that satisfies the needs of users
connected through a (medium-scale) fixed network, whose
connectivity is ruled by the explicit action of logging in and
out of the system, as well as mobile users whose connectivity
is under control (e.g., users that are not physically moving
while working). In this scenario, the fixed network provides
a backbone of permanently active PeerWare hosts, which
taking care of processing and routing the control messages
related to requests for operations, as well as subscriptions to
and notifications of events. As leaves of this backbone, other
PeerWare hosts may be permanently or discontinuously
attached. In particular, attached to the backbone is a dy-
namic fringe of mobile hosts, whose connectivity is enabled
by wireless devices. This scenario encompasses peer-to-peer
applications involving nomadic users, who dynamically col-
laborate by sharing documents and other information, like
in the case of mobile teamwork applications described in
Section 2.

The architecture of this first prototype relies heavily on



Jedi [10], a traditional, albeit distributed, publish/subscribe
core, which employs an event dispatching strategy based on
a hierarchical arrangement of dispatchers, and already pro-
vides some support for dealing with disconnections happen-
ing in a controlled way. Jedi events and subscriptions are
used to implement PeerWare events and subscriptions, but
also to implement the routing of execute and executeAnd-
Subscribe requests. In particular, each time a new node n is
created on the local data structure of some peer, a special
subscription is issued, holding the full path of n. Every call
to a global execute or executeAndSubscribe whose node filter
matches n is implemented by sending a special Jedi event
that matches the subscription above. This way, it is possi-
ble to take advantage of Jedi mechanisms to route events as
a mean to route execute and executeAndSubscribe calls only
towards peers that hold matching nodes. Data filters are
then executed locally. As for the support for mobile code,
which is necessary to implement the notion of actions, it is
provided by µCode [19], a lightweight and flexible toolkit
for fine-grained code mobility.

Observe also that, given the requirements of our testbed
application domains and the need of focusing on perfor-
mance and scalability, we chose to implement only the non-
atomic version of the global primitives. We plan to continue
working on this first implementation to add more features
in the future.

6. DISCUSSION AND RELATED WORK
The coordination paradigm adopted by PeerWare, which

allows a set of components to share information and to react
to changes occurring to this information, is very similar to
that of Lime. On the other hand, several aspects contribute
to differentiate the two middleware.

First of all, Lime does not distinguish between local and
global primitives. This provides an elegant model of commu-
nication but does not help Lime users in adopting a location-
aware style of programming. As pointed out in [22], the diffi-
culty resulting from distinguishing between local and global
actions often precludes the possibility of adopting the most
efficient design solution. Moreover, the need for location-
aware primitives has resulted in Lime in the introduction
of the notion of “misplaced tuples”. Lime components may
specify a different component as the destination of a tuple
that is being added to the global tuple space. If the two
components are connected at the time the operation is is-
sued, the result of the call is that the tuple is added to the
local tuple space of the caller, and then moved to the des-
tination tuple space in a single atomic step. Conversely, if
the destination component is not connected at the time the
operation is issued, the tuple is added to the tuple space
of the caller and it is marked as “misplaced”. When the
destination component connects, an engagement protocol is
run that moves the misplaced tuple into its local tuple space.
To guarantee the consistency of the global tuple space in the
presence of changes in the set of connected components, the
engagement protocols runs as a distributed transaction that
moves all the misplaced tuple to their expected destination.
It is evident how this approach impacts on the scalability of
the middleware.

As for events, Lime allows components to react only to
the insertion of a new tuple. The event model of Peer-
Ware is much more complex and results in greater expres-
sive power. Moreover, Lime provides the concept of strong

reaction. Strong reactions are supposed to fire atomically
with the insertion of a new tuple, and run until fixed point
is reached. Clearly, this mechanism provides expressiveness,
but it may be impractical if applied in a distributed set-
ting. For this reason, Lime actually constrains strong reac-
tions to run only within the scope of a single host, where it
is exploited mainly to support coordination among mobile
agents.

Finally, at the level of the data model, the notions of node
and tree of nodes provided by PeerWare enable a mech-
anism of scoping for both events and queries that increase
the expressiveness of the model and the potential scalability
of the middleware. Lime has nothing similar and the tuple
space is a flat data space, which does not provide any mech-
anism to limit the scope of the different primitives used to
access it.

Another class of potential competitors of PeerWare is
that of publish/subscribe middleware. With respect to these
environments, we observe that PeerWare implements most
of the features they traditionally offer. Like most advanced
publish/subscribe middleware, PeerWare fully exploits con-
tent based subscriptions through event filters. Moreover, it
adds the concept of node as a tool to classify events and to
reduce the scope of subscriptions, thus potentially increasing
the scalability of the middleware5.

Additionally, in traditional publish/subscribe middleware
events are usually published as a result of changes in the
internal state of one of the middleware clients. This state
is not managed by the middleware itself, and consequently
it is not immediately accessible to other clients. In most
cases, this forces programmers to put in place application-
level mechanisms to make this state visible to other clients,
or it forces them to add to the event itself all the informa-
tion needed to rebuild the relevant parts of this state. Con-
versely, PeerWare allows events to be directly associated
to changes in any item that is part of the gvds managed
by PeerWare itself. Since PeerWare peers may directly
access this gvds, it is possible to reduce the information
carried by events and to easily exploit complex interaction
patterns.

As for scalability, one could argue that the primitives
added by PeerWare to allow peers to access the gvds
could reduce the middleware scalability. This is not the case
thanks to the fact that PeerWare primitives have been de-
signed from the beginning by keeping scalability in mind.
Moreover, PeerWare publish/subscribe primitives are not
influenced by other primitives and even considering these
other primitives alone, as described in previous sections,
they can be easily implemented by using a pure distributed,
asynchronous approach. A practical proof of this claim is
that the current prototype of PeerWare has been imple-
mented on top of Jedi, a publish/subscribe middleware that
has been explicitly designed to offer good scalability, without
having to introduce any constraint in the way Jedi routes
events and subscriptions.

As a last consideration, it is useful to compare PeerWare
with some of the peer-to-peer environments that recently at-
tracted the attention of the community of Internet users. In
particular, here we refer to file-sharing applications like Nap-
ster [1], Gnutella [2], and Freenet [3] that adopt a peer-to-
peer style of coordination among their users to allow them

5This mechanism is similar to that of topics in JMS [7].



to share documents. First of all, it is relevant to observe
that this application domain is quite different from the one
for which PeerWare is intended. As an example, file shar-
ing over the Internet usually does not require searches to
be executed over the entire set of documents available. It is
considered perfectly acceptable that a search does not return
any matching file even if matching files exist. This character-
istics is exploited by the above mentioned systems to put in
place special mechanisms to reduce the network traffic gen-
erated by searches and to improve scalability. Conversely,
the PeerWare model does not consider this behavior ac-
ceptable. It is possible to imagine an implementation of
PeerWare specially tailored for this application domain
that relaxes the semantics of the global primitives to exploit
similar approaches to reduce the scope of searches (i.e., of
the execute primitive). Moreover, the natural scoping mech-
anism of PeerWare based on the concept of nodes could
be used as an alternative, or complementary, mechanism to
obtain similar results.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented PeerWare, a middleware for

distributed, peer-to-peer and mobile applications. Peer-
Ware adopts a model of coordination based on the notion
of global virtual data structure in which each peer shares a
set of data with the other peers, thus contributing to cre-
ate the gvds that is managed by the middleware. Together
with this model of communication based on data sharing,
PeerWare offers full support to an event-based communi-
cation style. The two models are strongly integrated, and
take benefit of the same concepts to limit the scope of both
operations to access the gvds and events occurring on items
in it. At the design level, we choose to provide a minimal
set of primitives to access the gvds and publish and sub-
scribe to events, whose expressive power is enriched through
the use of mobile code. In this sense, PeerWare is a core
middleware on top of which application-specific primitives
may be implemented.

Here, we presented also some architectural considerations
that guided the implementation of PeerWare, and we de-
scribed the results of our initial effort in providing a first
prototype that follows these design guidelines.

One of our long-term research goals is actually to use
PeerWare as both a conceptual and a “real” tool we can
shape from time to time to adapt to various scenarios and
to experiment with novel implementation strategies. In par-
ticular, we started working on a second prototype of Peer-
Ware, especially tailored for ad hoc networking and we plan
also to study the feasibility of a special implementation of
PeerWare tailored to the application domain of file sharing
over the Internet.

Finally, we plan to refine the model, and provide a com-
plete formalization of both the data structure managed by
PeerWare and the primitives it provides, with the goal of
identifying possible weakness of the approach or the poten-
tial for improvements.

Acknowledgments
We would like to thank Carlo Ghezzi, Ouejdane Mejri, and
Mattia Monga for the valuable comments they made on this
document. Finally, we would like to thank Mirko Cesarini
and Francesco Bardelli for their work on the prototype.

8. REFERENCES
[1] http://www.napster.com.

[2] http://www.gnutella.org.

[3] http://freenet.sourceforge.net.

[4] http://java.sun.com/products/javabeans.

[5] http://www.sun.com/jini/specs/js-spec.html.

[6] http://www.almaden.ibm.com/cs/TSpaces.

[7] http://java.sun.com/products/jms.

[8] O. Angin, A. Campbell, M. Kounavis, and R. Liao.
The Mobiware Toolkit: Programmable Support for
Adaptive Mobile Netwoking. IEEE Personal
Communications, Aug. 1998.

[9] G. Blair, N. Davies, A. Friday, and S. Wade. Quality
of Service Support in a Mobile Environment: An
Approach Based on Tuple Spaces. In Proc. of the 5th

IFIP Int. Wkshp. on Quality of Service, May 1997.

[10] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting
an event-based infrastructure to develop complex
distributed systems. In Proc. of the 19th Int. Conf. on
Software Engineering (ICSE98), 1998.

[11] G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi
event-based infrastructure and its application to the
development of the opss wfms. IEEE Transactions on
Software Engineering, To appear.

[12] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding
Code Mobility. IEEE Transactions on Software
Engineering, 24(5):342–361, May 1998.

[13] D. Gelernter. Generative Communication in Linda.
ACM Computing Surveys, 7(1):80–112, Jan. 1985.

[14] J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. ACM Trans. on
Computer Systems, 10(1):3–25, 1992.

[15] G.P. Picco, A. Murphy, and G.-C. Roman. Lime:
Linda Meets Mobility. In D. Garlan, editor, Proc. of
the 21st Int. Conf. on Software Engineering
(ICSE’99), pages 368–377, Los Angeles, CA, USA,
May 1999. ACM Press.

[16] M.Corson, J.Macker, and G.Cinciarone.
Internet-Based Mobile Ad Hoc Networking. Internet
Computing, 3(4), 1999.

[17] A. Murphy. Enabling the Rapid Development of
Dependable Applications in the Mobile Environment.
PhD thesis, Washington University in St. Louis, MO,
USA, Aug. 2000.

[18] A. Murphy, G.P. Picco, and G.-C. Roman. Lime: A
Middleware for Physical and Logical Mobility. In
Proc. of the 21st Int. Conf. on Distributed Computing
Systems (ICDCS-21), May 2001. To appear.

[19] G. P. Picco. µCode: A Lightweight and Flexible
Mobile Code Toolkit. In Proc. of Mobile Agents: 2nd

Int. Workshop (MA’98), volume 1477 of LNCS, pages
160–171, Stuttgart (Germany), Sept. 1998. Springer.

[20] G.-C. Roman, G. Picco, and A. Murphy. Software
Engineering for Mobility: A Roadmap. In
A. Finkelstein, editor, The Future of Software
Engineering, pages 241–258. ACM Press, 2000.

[21] D. Terry et al. Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System.
Operating Systems Review, 29(5):172–183, 1995.

[22] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A
Note on Distributed Computing. In J. Vitek and



C. Tschudin, editors, Mobile Object Systems: Towards
the Programmable Internet, volume 1222 of LNCS.
Springer, Apr. 1997.


